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ABSTRACT: 
 
The National Land and Water Information Service (NLWIS), an Agriculture and Agri-Food Canada (AAFC) initiative, is tasked 
with mapping ‘circa 2000’ land cover for agricultural areas of Canada with an overall accuracy of greater than 85%. The method for 
mapping land cover is being developed using a Decision Tree (DT) classifier (see5 software) with specific focus on the identification 
of 3 agricultural classes: grassland, annual and perennial crops. Class separation is based on rule sets automatically derived from 
ground information. Using an eCognition segmentation on the Landsat data, a per-object majority filter is performed on the output 
classification. A unique mosaic procedure has been developed using segmented objects and accuracy results from See5. Preliminary 
results show the AAFC methodology outperforms both the standard Maximum Likelihood Classifier (MLC) and the object based 
eCognition method. Implementing multi-date imagery to separate cropland from hay and pasture improves the accuracy of 
separating other classes, therefore leading to an overall improvement of the classification accuracy. The effect of ancillary data on 
the classification is dependent upon landscape characteristics. The DT approach, when combined with image segmentation, has 
proven to meet or overcome our accuracy requirements with minimum analyst intervention. 
 
 
RÉSUMÉ: 
 
Par l’entremise du Service National d’Information sur les Terres et les Eaux (SNITE), Agriculture et Agroalimentaire Canada 
(AAC) entreprend la cartographie de la couverture du sol pour le secteur agricole canadien. Celle-ci sera réalisée pour l’année 2000 
avec une précision anticipée supérieure à 85%. Une méthode par arbre de décision (logiciel see5) est utilisée en mettant l’emphase 
sur l’identification de 3 classes agricoles: prairies, cultures annuelles et cultures pérennes. Un ensemble de règles dérivé 
automatiquement de sites d’entraînement servira à différencier les différentes classes de couverture du sol. Un filtre de majorité est 
appliqué sur la classification résultante en utilisant les objets issus d’une segmentation des données Landsat (logiciel eCognition). 
Les résultats de la segmentation ainsi que la précision mesurée par le logiciel see5 permettent de gérer efficacement le processus de 
mosaïque. Les résultats préliminaires de classification démontrent que la méthode par arbre de décision surpasse la méthode par 
maximum de vraisemblance et l’approche orienté objets (eCognition). L’utilisation de données multi dates améliore la séparation 
entre les cultures annuelles et pérennes. Du même coup, la précision globale de la classification s’en trouve nettement améliorée. 
L’effet d’introduire des données auxiliaires dans le processus de classification est très variable et dépend des caractéristiques du 
paysage. L’approche par arbre de décision suivie d’une segmentation d’image nous permet d’atteindre, voire même dépasser nos 
objectifs de précision tout en minimisant l’intervention de l’analyste. 
 
 

1. INRODUCTION 

Increasing public pressure for environmental preservation, 
continued emphasis on high outputs in agricultural production 
and competition from other land uses are resulting in higher 
demands for careful management of soil, water and air 
resources. Scientific support for land use planning must start 
with reliable information relating to current resource conditions. 
One of Canada’s most glaring gaps in that aspect is the lack of 
current, accurate, complete and accessible digital land cover 
information. Current efforts to assess and improve production 
sustainability rely on a collection of agricultural land cover 
products that are out of date and of varying scales, classification 
schemes and accuracy levels. 
 
Preparation of regional land management tools such as nutrient 
management plans, environmental farm plans, best management 
practices, risk management plans and emergency measures 
plans require reliable data on the location of production 
activities with respect to waterways, topography, soil capability 

and cultural features such as roads and settlements. For 
purposes such as these, land use information that is capable of 
identifying features such as individual fields and farmsteads is 
required.  
 
Although the priority is for land use (economic) information, 
land cover information is more easily mapped and can serve as 
an approximation of land use. Land cover information derived 
from earth observation data has been identified within the 
National Land and Water Information Service (NLWIS) as a 
fundamental dataset to support many NLWIS objectives and 
related departmental projects, programs and activities. 
 
AAFC is developing a method for medium resolution (30m) 
land cover mapping of the agricultural area of Canada. The 
primary goal of the classification is to accurately delineate 
agricultural lands: this includes annually cultivated (cropland),  
perennially cultivated (pasture/forages), and grasslands. Other 
contextual classes (such as developed or forested lands) are also 
identified, however accuracies may be lower for these classes, 



 

as the classification process has been developed to target the 
separation of agricultural lands. The classification methodology 
under development at AAFC integrates a supervised Decision 
Tree (DT) classifier with an object oriented approach. This 
paper presents an overview of the methodology and shows 
initial results from selected test sites. 
 
 

2. METHODS 

Data Acquisition and Image Pre-Processing 2.1 

To date, about 80% of the required Landsat imagery has been 
acquired. Although plans call for the systematic mapping of all 
agricultural areas, methods are being developed and tested on 
agro-ecologically representative sites across Canada (Figure 1). 
These include 3 sites in eastern Canada (Ottawa-Ontario, 
Victoriaville-Québec and PEI-Prince Edward Island) and 7 sites 
in western Canada (Minnedosa-Manitoba, Swift Current-
Saskatchewan, Meadow Lake-SK, Lethbridge-Alberta, Calgary-
AB, Peace River-AB and Vancouver-British Columbia). Each 
site is comprised of one Landsat satellite scene ~ 175 km x 175 
km. The fragmented landscape in eastern Canada, where fields 
sizes are variable, contrast with the larger fields in the prairies 
and the mountainous area of the western part of the country.  

 
 

 
 

Figure 1. Test sites location 
 

For each scene, at least 2 ‘circa 2000’ images from early and 
mid growing season (typically May and July) were acquired. 
Landsat images from different years are used when two suitable 
images are not otherwise available in the same growing season. 
The Landsat data were not atmospherically corrected. Results 
from other studies (Song et al., 2001; Champagne et al., 2005) 
demonstrate that an atmospheric correction is unnecessary when 
classifying multi-temporal data, assuming that the training data 
comes from the same images as those being classified. All 
optical images were orthorectified using a 3-D multi-sensor 
physical model developed at the Canada Centre for Remote 
Sensing (Toutin, 1995) and implemented in PCI software. 
Ground control points (GCP) used for the geometric correction 
came from the CPLIC1 database of Geobase, an initiative 
overseen by the Canadian Council on Geomatics. A Tasseled 
Cap (TC) algorithm, in which Bands 1 to 5 and 7 were 
converted into three channels (brightness, greenness, wetness) 
was applied to each image pair. The TC transformation reduced 

data processing while maintaining accuracy (Kauth and 
Thomas, 1976; Lillesand and Kieffer, 1994).  
 
Separation of different land cover types can be enhanced using 
spatial textures (Stuckens et al., 2000). An intra-pixel texture 
measure was computed from the local variance in an adaptively 
placed 3 by 3 window of the green band on the mid season 
image. The location of the adaptively located window used to 
calculate local variance is the window with the lowest local 
variance of all windows that include the pixel (Ryherd and 
Woodcock, 1996). The intent is to calculate texture from the 
object or region to which a pixel belongs and avoid the edge 
enhancement associated with the calculation of texture from 
windows centered on the pixel in question. A semi-automated 
cloud and shadow masking technique based on a comparison of 
TC values between clouded and cloud-free images was applied 
to every image. Also, ancillary data such as DEM, DEM 
derived products (slope, aspect) and soil information were used 
as additional input to the classifier. 
 
Training data for the DT classifier was collected from a variety 
of sources such as crop insurance databases, aerial photography 
and visual interpretation of Landsat images. A minimum of 500 
sample polygons were selected in order to separate the 10 
classes outlined in Table 1. The number of sample sites 
collected per class is proportional to the area covered by that 
class within a specific scene. Class proportions were estimated 
from the EarthSat GeoCover LC-1990 product (MDA, 2006) 
and the 2001 Canadian census of agriculture recompiled at the 
scene level. Through a systematic random sampling grid, 
reference data to assess the accuracy of the final land cover 
product (mosaic) will be collected. 
 
 

Land Cover 
Unclassified   
Water   
Barren   
Developed   
Shrubland   
Wetland   
Grassland   
Annual Crops   
Perennial Crops and Pasture   
Coniferous   
Broadleaf   

 
Table 1. Land cover classes 

 
Classification Methodologies 2.2 

Classification was performed on a scene by scene basis because 
the dynamic nature of crop rotations, crop growth and harvest 
patterns create significant reflectance differences between 
adjacent satellite scenes within the temporal period 
encompassed by scene availability. All classifications were 
conducted using digital number (DN) values. Time series 
images were used for each classification in order to separate 
annual crops from hay and pasture, as the classes have varying 
spectral characteristics over the growing season. The DT 
method, as implemented in see5 software, is a multivariate 
model based on a set of decision rules defined by combinations 
of features and a set of linear discriminant functions that are 



 

applied at each test node. Decision boundaries and coefficients 
for the linear discriminate function are estimated empirically 
from the training data. The DT method was chosen because of 
its ability to handle discrete data, processing speed, 
independence of the distribution of class signatures, 
interpretable classification rules (Friedl and Brodley, 1997; Pal 
and Mather, 2003) and cost effectiveness. Advanced options 
such as pruning and boosting have also been incorporated into 
the decision tree classification process to improve the accuracy 
of the algorithm. Figure 2 provides an overview of the full 
classification process. 

 
 

 
 

Figure 2. Generalized classification process 
 

A Graphical User Interface (GUI) developed by AAFC and 
Statistics Canada automatically manages the classification 
processes through see5, PCI Geomatica and ArcGIS. The 
training sites, ancillary data and spectral information from the 
tasseled cap transformation were entered into the See5 software. 
A cross-validation was performed on the centroids of the 
training site polygons, providing an estimate of the accuracy: 
centroids were divided into n blocks of roughly the same size 
and class distribution. For each block in turn, a classifier was 
constructed from the samples in the remaining blocks and tested 
on the samples in the hold-out block. Results give the analyst 
the ability to revisit the training sites or to proceed with the 
classification. A two-level hierarchical classification scheme 
(Figure 3) is implemented in the methodology. This hierarchical 
approach allows the landscape to be segmented into general 
classes within which more detailed classes can be 
discriminated.  
 
 

 
 

Figure 3. Two-level hierarchical classification scheme 
 

This portion of the methodology has been compared with a 
conventional Maximum Likelihood Classifier (MLC) on 5 sites. 
eCognition software classification results were also evaluated at 
the Lethbridge and Ottawa sites. A 3-level top down approach 
was built using a combination of Nearest Neighbor and 
membership functions. Annual and perennial crops were 
differentiated on the last level at a scale factor of 10 and a 
spectral weighting of 0.8 and a spatial weighting of 0.2.  
 

Post-Processing 2.3 

In order to improve accuracy and aesthetics, an eCognition 
segmentation and majority filter was applied to the DT 
classification. However, clouds, overlapping and non-
overlapping areas must be processed independently, so a 
thematic layer partitioning the scene into homogenous zones 
representing these areas was created. This layer and the multi-
temporal Tasseled Cap bands were input to the eCognition 
segmentation algorithm that derives polygons (object 
primitives). A spatial scale of 10 was found to be a good 
compromise between number of objects and individual field 
representation. The polygons were imported into ESRI, ArcGIS 
Spatial Analyst and a majority zonal statistic was calculated on 
the per pixel classification. This assigned the majority class 
value within each object primitive to the entire polygon.  
 
The filtering impact on the classification was also evaluated 
using other filters (mode and sieve) on the Ottawa and 
Lethbridge sites. 3x3 and 7x7 pixel mode filters were used. The 
sieve filter removes all polygons smaller than a given size and 
merges them with their largest neighbours. Thresholds of 15 
and 30 pixels were tested. 
 
Each zone within the thematic layer and in consequence each 
individual object, is linked to an accuracy value from the cross-
validation step. This accuracy information guides the automated 
mosaic process. Objects sharing a line segment with an image 
edge or cloud/shadow edge are eliminated from the scene being 
merged. Object deletion occurs on the overlapping area only if 
data exist on the mosaic. A second phase compares cross-
validation accuracies of the overlapping area and deletes objects 
with lower values. The remaining objects are then pasted onto 
the mosaic product and accuracy values are updated. 
 
 

3. RESULTS 

Classification trials with the DT classifier were performed on 
ten test sites. However, quantitative accuracy assessment does 
not support all sites; in some cases, a qualitative evaluation of 
the classification was appropriate to support the methodology 
development. Initial results indicate that the DT approach 
outperformed the MLC method on the 5 sites (Table 2). Overall 
accuracy differences varied from about 5% to 13%. Large 
differences could be an indication that training statistics are not 
suitable as they indicate non-homogeneity within classes and 
are non-Gaussian. DT methodologies permit the integration of 
disparate geospatial data and unlike maximum likelihood 
classifiers, the DT approach does not make any assumptions 
regarding the statistical distribution of these data (McNairn et 
al., 2005). 
 
Comparisons between the DT classifier and eCognition (for 
classification purposes) were also investigated. Overall results 
for eCognition were almost identical to the MLC method. 
Preliminary results show eCognition has very good potential in 

Water 
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Forest 

Agriculture 
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Perennial Crops and Pasture
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defining the broad agriculture class (annual and perennial 
crops) for both the Lethbridge and Ottawa sites. Fields are very 
well delineated on the per-object classification. However, 
distinction between annual and perennial crops is less 
satisfactory, particularly with the Lethbridge scene where fields 
are a mix of dryland and irrigated land. eCognition requires 
significant user input and expert knowledge of the area being 
classified. The potential for higher accuracies exists, but even if 
attained, the exact process -mix of spectral and spatial settings- 
cannot be applied to other scenes. In comparison, the DT 
method is much simpler. Expert knowledge (aside from 
acquiring training sites) is not needed and the generation of 
rules is automatic. With DT, classification time is more a 
function of processor power than human intervention. Due to 
time (operational) constraints and considering the fact that 
AAFC needs an approach that is relatively constant across 
Canada, using eCognition alone was not considered an option. 
 

 
 DT MLC 

PEI* 86.3% 80.9% 
Ottawa 88.3% 83.8% 

Meadow Lake* 96.5% 89.5% 
Lethbridge 87.7% 74.5% 
Vancouver* 95.6% 83.7% 

 
Table 2. DT and MLC overall accuracy assessment comparison 

(* no differentiation between annual and perennial crops) 
 
Implementing multi-date Landsat imagery to the DT process 
has  lead to an overall improvement in classification accuracy 
of up to 10 percent. Marked improvements were observed for 
agriculture classes (up to 20% for the user and producer 
accuracies). The effect of adding ancillary data to the 
classification process is dependent upon the landscape (Table 
3). In mountainous regions such as Lethbridge and Vancouver, 
DEM and derived products (slope, aspect) improved overall 
accuracies by more than 4%. Effects on other sites with flat or 
low rolling topography were negligible. In all cases, introducing 
texture slightly improved classification results; Classes with 
high spectral heterogeneity such as developed areas were better 
represented. The Canadian Land Inventory (CLI) index, which 
defines the land capability for agriculture from soils 
information at the 1:250 000 scale, has proven to be useful for 
some sites. A slight increase in accuracy was observed for 
scenes with large portions of land considered as non-suitable for 
agriculture such as the Canadian shield on the Ottawa scene and 
the mountainous area around Lethbridge and Vancouver. 
 
 

Change in Overall Accuracy  
Texture DEM & derived  

products 
CLI 

PEI +0.7% 0.0% +0.2% 
Victoriaville n/a -0.7% -1.8% 
Ottawa +0.2% +1.0% +2.1% 
Lethbridge +2.5% +5.2% +1.2% 
Vancouver n/a +4.1% +0.9% 

 
Table 3. Changes in overall accuracy when adding selected 

ancillary data to the DT classifier 
 
The object based majority filter yielded superior results to the 
mode and sieve filters. For these latter two, accuracy increases 
with the filter size (Table 4). Accuracy results are similar to the 

object based filter but class edges are rounded and linear 
features are lost (Figure 4). The object based majority filter 
added between 2% to 4% to the per-pixel classification overall 
accuracy. Although very close in accuracy to the mode and 
sieve filters, it is clearly superior visually. Class edges are 
enhanced and linear features are better represented. 
Statistically, an increase in reference data along edges and 
narrow features such as roads would probably further 
distinguish the object based filter from the other two. 
 
 

 Lethbridge Ottawa 
Raw 85.5% 92.5% 
Mode 3x3 87.0% 94.0% 
Mode 7x7 89.0% 94.5% 
Sieve (15 pixels) 88.2% 93.9% 
Sieve (30 pixels) 88.7% 94.1% 
Object based 89.3% 94.2% 

 
Table 4. Filtering effect on classification accuracy 

 
Merging two contiguous classified scenes without seam lines or 
rules creates obvious discontinuities (Figure 5). Scene edges 
and cloud borders - due to variations in input imagery dates - 
become apparent. Inconsistencies could be easily removed by 
manually editing seam lines. This would take a considerable 
amount of time however, and end product accuracy would be 
compromised.  
 
 

 

A B

C D
 

Figure 4. Post-filtering effect: A) Original classification; B) 
Object based filter; C) 3x3 mode filter; D) Sieve Filter (30 pix.) 
 



 

The object-based mosaic approach optimizes final product 
accuracy and minimizes visual inconsistencies by generating 
cut lines along segmented object edges (Figure 6). However, 
pasting one object-based classification over another may 
introduce slivers along the cut lines: objects of the newly 
classified scene may not match those of the existing mosaic 
product. Most of these small polygons can be removed during 
the overlapping process by using a minimum tolerated distance 
between vertices: vertices that fall within the set cluster 
tolerance are snapped together. Trials conducted thus far show 
that remaining clusters have a very small visual impact at the 
scene scale. 
 
 

 
Figure 5. Inconsistencies on the mosaic product: (A) between 2 
adjacent scenes and (B) within scene, along multi-date imagery 
edges (spring and summer images are used to classify portion to 

the right and spring image is used to classify strip to the left). 
 
 

 
 

Figure 6. Mosaic output from the object based approach. 
Inconsistencies are no longer visibles. 

 
 

4. CONCLUSIONS 

A Decision Tree (DT) method has been developed to 
successfully classify Canadian agricultural lands. Post filtering 
and the combination of images into mosaics make use of object  
segmentation. PCI, See5, ESRI, and eCognition software were 
integrated in to a custom GUI written in VB.Net. The DT 
classifier was tested on several sites across the country, yielding 
superior results when compared to a MLC or a “pure” 
eCognition approach. In addition to being a flexible land cover 
classification tool, the DT approach permits the integration of 
disparate data sources. The AAFC methodology takes 
advantage of the segmentation process of eCognition, which 
reduces the “speckle” effect found in pixel-based classifiers, 
relying on a more statistically robust algorithm to automate 
class separation.  

Scene 1 
Scene 2 
(2 dates input) 

Scene 2 
(1 date input)

 
Our 85% target accuracy was reached for every site where a 
quantitative assessment was done. However, considering 
Canada’s diverse agricultural landscape, testing on more sites is 
required to establish its robustness. Our intent is not to build a 
static methodology but rather to constantly improve it as our 
classification work evolves. Integration of other earth 
observation imagery and geospatial data within the classifier 
will continue to be explored.  
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